Ketosis and Ketoacidosis

Ketosis is a metabolic state in which the bodies energy supply comes from ketone bodies in the blood in contrast to a state of glycolysis in which there is adequate glucose breakdown. In most cases, ketosis results from a high metabolism of fatty acids which are converted to ketone bodies. Ketone bodies are formed from ketogenesis when liver glycogen stores are depleted. Most cells in the body utilize both ketone bodies and glucose for energy, and while in ketosis the body works to maintain normal metobolism so it ramps up gluconeogenesis. Gluconeogenesis is glucose synthesis used to go through glycolysis.

Most of the time ketosis is a short interval of time, although long-term ketosis may be a result of fasting or a dietary insufficiency of carbohydrates. In glycolysis, high levels of insulin are released which promotes storage of fat and delayed release of fat from adipose tissue. In ketosis, fat reserves are readily available and are consumed. For this reason, ketosis has become one of the more recent diet fads as a way to burn fat quickly and lose weight.

Ketoacidosis

Although similar, ketosis is not ketoacidosis. Ketoacidosis is a physiological life-threatening situation due to insulin deficiency. Ketone bodies are acidic, and acid-base homeostasis in the blood is normally maintained through bicarbonate buffering, respiratory compensation, and renal compensation. Prolonged excess of ketone bodies can overwhelm the normal compensatory mechanisms and cause a state of acidosis when the blood pH falls below 7.35.

There are multiple precipitating factors that leads to ketoacidosis, which is most prevalent in patients with type 1 diabetes. Ketoacidosis in the case of a patient with type 1 diabetes is deemed diabetic ketoacidosis (DKA). In established type 1 diabetes, patients often forget to take insulin, with non-compliance being the bigger issue. This does not rule out other causes of ketoacidosis, as those are still prevalent. Acute major illnesses such as a myocardial infarction, cerebrovascular accident, sepsis, or pancreatitis. Certain drugs that affect carbohydrate metabolism such as glucocorticoids, diuretics, or anti-psychotic agents can cause ketoacidosis. General malnutrition associated with physiological problems can also lead to ketoacidosis. Such disorders lead to psychological starvation, which leads to ketone production and if prolonged ketoacidosis.

markdown_lightbox_76061992a98f509c28ab45c55067544ce05973a5-42b0a

Clinical Presentation

The clinical presentation of DKA is a two headed monster. The earliest symptoms of marked hyperglycemia is polyuria, polydipsia, and unexplained weight loss. As the duration of hyperglycemia continues neurological symptoms, including lethargy, focal signs and obtundation develop. Further progression can lead to a coma. The other head is the extent of the metabolic acidosis due to the excess ketone bodies. As the acidemia worsens accompanied with it is abdominal pain which can sometimes be severe. The electrolyte imbalance and metabolic acidosis causes delayed gastric emptying and an ileus (obstruction of the bowel). Vomiting and nausea are common.

Diagnostic Evaluation

The initial laboratory evaluation of patients with suspected DKA should include a serum glucose to establish whether or not the patient is hyperglycemic or not. Its helpful to measure the serum electrolytes and calculate the anion gap, BUN, plasma creatinine, and a plasma osmolality. This gives a broad picture of the metabolic state of the patient. Urinalysis is commonly performed along with urine ketones measured by dipstick method. Serum ketones are also measured to assess whether or not the patient is undergoing ketogenesis. An arterial or venous blood gas can be helpful to determine whether the serum bicarbonate is substantially reduced, which presumptively leads to metabolic acidosis. This also aids in determining hypoxia if it is present.

Findings

Hyperglycemia and hyperosmolality are the two primary laboratory findings in patients with DKA. Patients with DKA have a high anion gap metabolic acidosis. Serum glucose often times exceeds 350-500 mg/dL. Three ketone bodies are produced and accumulate in DKA; acetoacetic acid, beta-hydroxybutyric, and acetone. Acetoacetic acid is the only true ketoacid. A serum ketone measurement gives levels of beta-hydroxybutyric, while a urine dipstick measures the presence of acetoacetic acid using the nitroprusside method.

Other findings that may or may not be present are leukocytosis, and lipidemia. The majority of patients with hyperglycemic emergencies present with leukocytosis, which is proportional to the degree of ketonemia. Patients with DKA also present with marked hyperlipidemia. Lipolysis, primarily caused from insulin deficiency, and to a lesser extent elevated levels of lipolytic hormones including catecholamines, GH, ACTH, and glucagon. Lipolysis releases glycerol and free fatty acids into circulation which causes insulin resistance and serves as the substrate for ketoacid generation in the hepatocyte mitochondria.

To recap, ketosis is a dietary manipulation that if done right can lead to results. Ketoacidosis is a life-threatening metabolic state that requires immediate medical care.

This discussion will be continued with the next article focusing on ketoacid generation.

Leave a Reply